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1. INTRODUCTION !

!
Dispersion hardening is a well known mechanism
to strengthen crystalline materials. Partial crys-
tallization of amorphous alloys improves the yield
strength (relative to the as-quenched alloy) but
concomitantly the mlloy tends to lose its ductility
(1)(2)(3)(b). : !

This paper presents the first observation and

gneasurement of the micro-structure and the mechan-
ical properties of a ductile WC-particle containing
amorphous allioy.

i AME

The present technique to prepare two-phase

Biin

‘amoxphous materials has the potential to improve

Lt

properties such as strength, wear resistance and
I super-conductivity.

2. EXPERIMENTAL PROCEDURE

il

"1785110312 was chosen because the amorphous
alloy can be obtained easily at relatively low
|
.quenching rates (5) and has good ductility (6)(7),

WC-particles were used as a hard second phase con-

o Nob Wi

!stituent since WC has a high Young's modulus of
‘68,000 kg/rmn2 (8). Both the non-dispersed, and the .
C-containing alloys were prepared in a single drum ]
quenching apparatus as continuous ribbon specimens
The micro-structure of the WC- :
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3. EXPERIMENTAL RESULTS

3-1. Transmission electron microscopy of the WC-

containing amorphous alloy

i
|

i Figure 1 shows (a) a dark field of the WC-con-
taining i g51, 48,5 alloy, (b) a selected area elec-

tron diffraction pattern. l
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Fig. 1. Transmission electron micrographs of WC- |
| containing amorphous Ni,gS1, B3 (a) & dark field

g = (2301), and (b) the selected area diffraction

e iof L0 um thickness. ; pattern. i
lcontaining Ni‘?BSilO 1o Was investigated by scanning , !
. ieleet:rcm microscopy and microprobe analysis (EDA) 1n, The micro-stmcture of the WC-containing Ki 88110 12
a JEOL 733 as well as by transmission electron mi- cousis*s of an amorphous matrix and hexagonal-shaped
?croscopy (TEM; JEOL CX200). Crystallization temper- WC-particles, b-5 um in size, containing some rela-
ature was measured using a differential scanning tive straight dislocations. The amorphous nature of
calorimeter (DSC, Du Pont 990) at a heating rate of the matrix is clearly indicated by halo patterns,
50°C/minute. and the h.c.p. structure of WC is easily identified
m» Tensile yield stress was measured in an Instron by analyzing the diffraction pattern in Fig. 1(c).
B testing machine at a cross-head-speed of 0.05 sMimin., The dark field image was taken with the (2310)
:A::.ff:: Hardness was measured with a Knoop hardness tester reflection of WC.
under a load of 400 gr. Tensile fracture surface A crystalline, metastable phase can occasione
and deformation marking in bending were observed by ally be observed at the interface between the “178
_ scanning electron m_icroscop}:_(SE?ll)_:_ I _
inig
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;_.8110312 amorphous matrix and the HC-p;;Eicles.
3-2. Distribution of WC-particles

Figure 2(a) shows the distribution of WC-parti-
cles on the specimen surface as revealed by ‘
compositional backscattering mode in the JEOL T733.

(a)

WC-disparsed
amorphous Niyg SioBs '
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. Fig. 2.
amorphous NiTasi

Surface images of the WC~distributed

10812 (a) compositional
backscattering mode in the JEOL 733, (b) energy
dispersive analysis spectrum of a hright particle.

[

é The presence of WC, which is seen as white dots in
Fig. 2(a), was confirmed by the EDA. Figure 2(b)

shows that the X-ray spectrum of a particle with a ;

) Ny

white contrast contains the characteristic lines of
‘tungsten. The WC-particles are uniformly distribut-
From Fig. 2(a),

we estimate the WC-volume fraction of the dispersed
)

ed throughout the amorphous matrix.
]

‘amorphous alloy as about T%.

3-3. Mechanical property of the WC-dispersed !

amorphous Ni788110312

3-3-1. Bending deformation

WC-dispersed amorphous N1783110312 can be bent
back 180° without fracturing.

secondary electron image and {(b) a compositional

Figure 3 is (a) a

image of the surface of a bent WC-dispersed alloy.
We find that the slip bands by-pass the second phmse

particles or agglomorates. Such a delocalization of

ithe 8lip bands is expected to increase the strength
Ff a dispersed amorphous alloy.

=
|

I
i (a) (v)
Fig. 3. Deformation marking of bent WC-dispersed

amorphous “17851 ribbons {(a) a secondary

10812
electron image and (b) a compositioml izage.

3—3-2. Tensile Yield Stress

Figure 4 shows the tensile stress-extension

curves for the WC-dispersed and non-dispersed amor-

phous NiTBSiIOBlZ' | b
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Fig. b.
and WC-dispersed amorphous “1785‘10312'

Stress-extension curves for non-dispersed,

}18- 4 shows that specimens fractured within the
Elastic region, after some deviation from linearity
The WC-dispersed
amorphous Ni,gS1, B, (7% WC-volume fraction) has a
yield strength of 280 kg/mme; this stress level is
ﬁ.h times higher than that of 203 kg/mn2 for non-

785110812
the vein pattern and a featureless slip zone on the

in the stress-extension curves.

dispersed amorphous Ni The presence of

tensile fracture surface indicates a shear slip pro-
(10) {11). For this

reason, the fracture stress may represent the gener-

cess; i.e., the tearing mode

al yield stress of the thin specimen of WCl-dispersed
amorp;ous NiTBSiloBl2' The yield stress (203
kg/mm“) of non-dispersed amorphous "1183i10312 fol-
lows Hill's relation between hardness and shear
stress of a rigid perfectly plastic material (6).

Table 1 summarizes these results.

3-3-3, Fractography
Figure % is a secondary electron imege and(b) a
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: PR * {This indicates that the WC;-particles or agglomorates
} . et s | Koo " Corstooton .do not act as the initiation site for decohesion,
Compo troction, % | hg/mm sg/mmd ag/mm? temo, K ‘but are load bearing in the soft matrix (liquid
! WC-NipgSighhg| 7 200 - 12200" 123 }layer) of the slip band after plastic instability
; NipgSiglha [ ' 203 638 “ 000 "  commences.
| . o
i estimated volue based on eqn. | ‘ h. DISCUSSION
e Table 1. Mechanical and thermal characteristics of :
| e provide two simple bounds on the Young's
WC-dispersed and non-dispersed amorphous Ni785i10
N B modulus for a composite (two phase material) (12).
" ’ 12 The upper bound, which assumes equal strain in both
' compositional image of the same fracture surface phases under elastic deformation is given by:
3 of a WC-dispersed alloy. Fig. 5 indicates that frac- .
' ture of a WC-dispersed amorphous alloy occurs by a E = Bn (1 -Vf) + EpVf (1)
- slip process after plastic instability.
.where E is the effective modulus, Em, and Ep are -
' .the Young's modulus of the matrix and second phase
f
-1 particle respectively, and Vf is the volume frac-
Etion of the second phase particles. The lover =
: . = !bound is: -
: . l
o 1.-ve VEy-1
' - - E= ( = + E—p‘) (2)
: ” which is based on an equal stress model. -
' N - * : Figure T shows the yield stresc of the WC-dis-
) =t (a) (v) " persed Ni_oSi,.B., as a function of volume fraction.
- o . 78°710712
- - Fig. 5. Tensile fracture surface of the WC-dispers-
. - WC-dispersed
. i ed amorphous “1785110312 (a) a secondary electron . a00f Ni2eS1oBiz Goow bows
- image and (b) a compositional image. z %
. Z C o :
- : Figure 6 shows a fracture surface with a high :'300
.3 = (volume fraction of WC. A vein pattern is still ob~ ; g N
1" 'served in Fig. 6, indicating a ductile failure 1 §
| mode. . 200}
Y | L
' i . 0 20
i + WC - Volume fraction, %
"

'Fig. T. Tensile yield stress of the WC-dispersed
o aa ! amorphous N1788110312 as a function of volume ‘
i,; ; l fraction of WC, !
!

The yield stress (OY) of various amorphous alloys
correlates with Young's modulus: {13)

oy = Bn/a (3)
. b. itional image of fracture surf
Fig. 6. A compos a8 uriace vhere a is a constant ranging from 30-40. If we
apply Fon. (3) to the yield stress of the WC~-dis-
persed amorphous alloy, its yield stress (owc) is:

of the WC-digpersed amorphous NiTSSiloB'le.

i T In addition, both fracture surfaces of the WC-

a -
di spersed amorphous "1783110312 show an identi °yy,;c . E/a (Ua)
cal distribution of WC particles on both surfaces.

- . B - ——— o —— e [ R R g




|
'
(
s
PRIPCAN
4
~¢
;
{
4
3
s
1
i
|
]
.
3
4
b %
f’J .
o -
:1 s g soms "‘:’

SR

i

NRREH

LT

Ty N Wit

L—TSnbstitutins Eqn. (3) into Eqn. (L-a) yields: 1

(4-v) &
L
Combining Eqn. (1) and (2) with Eqn. (4-b) respec-

tively we get two expressions for dispersion hard-

ening. The upper bound on the yield stress is:

Oywe = Oy {1+ vr (%5) -1} (s)

The lower bound is:

Sywe = Oy {1 +vre (%s) - 1171 ()

The solid lines in Fig. 7 denote prediction of Eqn,
:(5) and (6) using values of 68,000 kg/mm2 and 8,000
kg/mm2 for Young's modulus of WC and amorphous NiTa
8110312 respectively.

The yield stress of the WC-dispersed amorphous

Ni788110312 appears to increase with volume fraction -

according to the upper bound rule of Eqn. (6). If
Eqn. (6) indeed applies, & considerable improvement
'of the strength of the matrix material can be ob-
tained with a small fraction of hard particles.

Further measurement of the yield stress and
Young's modulus as a function of volume fraction are
‘being carried out.

)
|
;5. CONCLUSIONS
|
i

1. We have succeeded in preparing the WC-con-
10812. This alloy has good
ductility and can be bent back 180° without frac=
‘turing.

‘taining amorphous Ni7851

2. Transmission electron microscopy confirms '
that the Ni788110812 matrix is amorphous, and the ?
we hexagonal. SR images indicate a uniform dis-
persion of WC-particles or particle agglomorates in
the amorphous matrix. ;

3. The yield stress of the WC-dispersed amor-
phous Ni785110312 is 1.4 times higher than that of
non-dispersed NiTGSiloBlz. The increase is the
yield stress for the WC-dispersed amorphous alloy
appears to obey the mixture rule (upper bound) for
two phase materials. '

L. The slip bands, as tested in bending, by-
pass WC-particles or particle agglomerates, Tensile

fracture surface of the WC-dispersed alloy is com=-

posed of a "vein" pattern containing the WC-particle,

and a featureless smooth zone. i
1

)
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